
Secure Cloud Storage with File Assured Deletion

Gousiya Begum , M. Shravya
CSE Department, MGIT, Hyderabad, INDIA,

Abstract — When we outsource data backup to third-party
cloud storage services so as to reduce data management costs,
security concerns arise in terms of ensuring the privacy and
integrity of out-sourced data. We tried to solve this issue by
designing FADE(File Assured Deletion), a practical,
implementable and readily deployable cloud storage system
that focuses on protecting deleted data with policy-based file
assured deletion.
FADE is built upon standard cryptographic techniques, such
that it encrypts outsourced data files to guarantee their
privacy and integrity, and most importantly, assuredly deletes
files to make them unrecoverable to anyone (including those
who manage the cloud storage)upon revocations of file access
policies. In particular, the design of FADE is geared toward
the objective that it acts as an overlay system that works
seamlessly atop today’s cloud storage services.
To demonstrate this objective, we implement a working
prototype of FADE atop Amazon S3, one of today ’s cloud
storage services, and empirically show that FADE provides
policy-based file assured deletion with a minimal trade-of
performance overhead. Our work provide sin sights of how to
incorporate value-added security features into current data
outsourcing applications.

Keywords: Policy-based file assured deletion, cloud storage,
prototype implementation.

I. INTRODUCTION

Cloud storage offers an abstraction of infinite storage space
for clients to host data, in a pay-as-you-go manner[1] [3].
For example, Smug Mug [4], a photo sharing
website ,chose to host terabytes of photos on Amazon S3 in
2006 and saved about 500K US dollars on storage devices
[2].Thus, instead of self-maintaining data centers,
enterprises can now outsource the storage of a bulk amount
of digitized content to those third-party cloud storage
providers so as to save the financial overhead in data
management. Apart from enterprises, individuals can also
benefit from cloud storage as a result of the advent of
mobile devices Given that mobile devices have limited
storage space in general, individuals can move audio/video
files to the cloud and make active use of space in their
mobile devices.
However, privacy and integrity concerns become relevant
as we now count on third parties to host possibly sensitive
data. To protect outsourced data, a straightforward approach
is to apply cryptographic encryption onto sensitive data
with a set of encryption keys, yet maintaining and
protecting such encryption keys will create another security
issue. One specific issue is that upon requests of deletion of
cloud storage providers may not completely remove all file
copies (e.g., cloud storage providers may make multiple file
backup copies and distribute them over the cloud for
reliability, and clients do not know the number or even the
existence of these backup copies), and eventually have the

data disclosed if the encryption keys are unexpectedly
obtained either by accidents or by malicious attacks.
Therefore, we seek to achieve a major security goal called
file assured deletion, meaning that files are reliably deleted
and remain permanently unrecoverable and inaccessible by
any party.
The security concerns motivate us, as cloud clients, to
develop a secure cloud storage system that provides file
assured deletion. However, a key challenge of building such
a system is that cloud storage infrastructures are externally
owned and managed by third-party cloud providers, and
hence the system should never assume any structural
changes (in protocol or hardware levels) in cloud
infrastructures. Thus, it is important to design a secure
overlay cloud storage system that can work seamlessly atop
existing cloud storage services.
In this paper, we present FADE, a secure overlay cloud
storage system that ensures file assured deletion and works
seamlessly atop today’s cloud storage services. FADE
decouples the management of encrypted data and
encryption keys, such that encrypted data remains on third-
party(untrusted) cloud storage providers, while encryption
keys are independently maintained by a key manager
service, whose trustworthiness can be enforced using a
quorum scheme[13].
A motivating application of FADE is cloud back-up
systems (e.g., JungleDisk[5], Cumulus[6]), which use the
cloud as the backup storage for files. FADE can be viewed
as a value-added security service that further enhances the
security properties of the existing cloud-based backup
systems.
In summary, our paper makes the following contributions:
We propose a new policy-based file assured deletion
scheme that reliably deletes files with regard to revoked file
access policies. In this context, we design the key
management schemes for various file manipulation
operations.
The storage cloud is maintained by a third-party cloud
provider (e.g., Amazon S3) and keeps the data on behalf of
the data owner .We emphasize that we do not require any
protocol and implementation changes on the storage cloud
to support our system .Even a naive storage service that
merely provides file upload/download operations will be
suitable.
We implement a working prototype of FADE using java
technologies in NetBeans and we use the OpenSSL library
for the cryptographic operations. In addition, we use
Amazon S3 as our storage cloud. This section is to address
the implementation issues of our FADE architecture based
on our experience in prototyping FADE. Our goal is to
show the practicality of FADE when it is deployed with
today’s cloud storage services.

Gousiya Begum et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2810-2815

www.ijcsit.com 2810

II. RELATED WORK

We present policy-based file assured deletion, the major
design building block of our FADE architecture. Our main
focus is to deal with the cryptographic key operations that
enable file assured deletion. We first review time-based file
assured deletion. We then explain how it can be extended to
policy-based file assured deletion.

Time-based file assured deletion, which is first introduced
in [14], means that files can be securely deleted and remain
permanently inaccessible after a predefined duration. The
main idea is that a file is encrypted with a data key, and this
key is further encrypted with a control key that is
maintained by a separated key manager service. Time-based
file assured deletion is later prototyped in Vanish [7].
Vanish divides a data key into multiple key shares, which
are then stored in different nodes of a peer-to-peer network.
Nodes remove the key shares that reside in their caches for
8 hours. If a file needs to remain accessible after 8 hours,
then the file owner needs to update the key shares in node
caches.

Policy-based Deletion: We associate each file with a single
atomic file access policy (or policy for short), or more
generally, a Boolean combination of atomic policies. Each
(atomic) policy is associated with a control key, and all the
control keys are maintained by the key manager. Similar to
time-based deletion, the file content is encrypted with a data
key, and the data key is further encrypted with the control
keys corresponding to the policy combination. When a
policy is revoked, the corresponding control key will be
removed from the key manager. Thus, when the policy
combination associated with a file is revoked and no longer
holds, the data key and hence the encrypted content of the
file cannot be recovered with the control keys of the
policies. In this case, we say the file is deleted. The main
idea of policy-based deletion is to delete files that are
associated with revoked policies. is associated with a
control key, and all the control keys are maintained by the
key manager.
We review other related work on protecting outsourced data
storage.
Cryptographic protection on outsourced data storage has
been considered (see survey in [8]). For example, Wang et
al. [9] propose secure outsourced data access mechanisms
that support changes in user access rights and outsourced
data. Ateniese et al. [10] and Wang et al. [11] propose an
auditing system that verifies the integrity of outsourced data.
However, all the above systems require new protocol
support on the cloud infrastructure , and such additional
functionalities may make deployment more challenging.
Security solutions that are compatible with existing public
cloud storage services have been proposed. Yun et al.[12]
propose a cryptographic file system that provides privacy
and integrity gurantees for outsourced data using a
universal hash based MAC tree. Goyal et al. [15] extend the
idea to key-policy ABE, in which attributes are associated
with private keys, and encrypted data can be decrypted only
when a threshold of attributes are satisfied.

III. SYSTEM DESIGN

Fig. 1 FADE Architecture

Secure Overlay Cloud Storage with File Assured Deletion
is a user-interactive app on the java platform. The project is
its own entity and is derived based on the java.
We design FADE, a practical implementable, and readily
deployable cloud storage system that focuses on protecting
deleted data with policy-based file assured deletion. FADE
is built upon standard cryptographic techniques ,such that it
encrypts outsourced data files to guarantee their privacy and
integrity ,and most importantly, assuredly deletes files to
make them unrecoverable to anyone (including those who
manage the cloud storage)upon revocations of file access
policies.
The application uses many different software interfaces.
The Windows XP operating system is essential for the
product to operate. Net Beans will be needed for the
development portion of the project, and it will be utilizing
the java software packages. Communication is not needed
by this application because it is based locally.
The physical characteristics of the application consist of
various java app that run the java environment
There is no need of communication hardware in Project
FADE: Secure Overlay Cloud Storage with File Assured
Deletion.
We define the metadata of FADE attached to individual
files and also describe how we implement the data owner
and the key manager, and how the data owner interacts with
the storage cloud.
Representation of Metadata:
For each file protected by FADE, we include the metadata
that describes the policies associated with the file as well as
a set of encrypted keys. In FADE, there are two types of
metadata:
• File metadata: The file metadata mainly contains two

pieces of information file size and hash. We hash the
encrypted file and it is attached at the beginning. Both
the file metadata and the encrypted data file will then
be treated as a single file to be uploaded to the storage
cloud.

 Key
Manager

Data
Owner

File
(Encrypted)

Cloud

Meta data

key

Gousiya Begum et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2810-2815

www.ijcsit.com 2811

• Policy metadata: The policy metadata includes the
specification of the Boolean combination of policies
and the corresponding encrypted cryptographic keys.
Here, we assume that each single policy is specified by
a unique 4-byte integer identifier. To represent a
Boolean combination of policies, we express it in
disjunctive canonical form, i.e., the disjunction (OR) of
conjunctive policies, and use the characters ‘*’ and ‘+’
to denote the AND and OR operators. Then we upload
the policy metadata as a separate file to the storage
cloud. This enables us to renew policies directly on the
policy metadata without retrieving the entire file from
the storage cloud. In our implementation, individual
files have their own policy metadata, although we
allow multiple files to be associated with the same
policy. In other words, for two data files that are under
the same policy, they will have different policy
metadata files that specify different data keys, and the
data keys are protected by the control key of the same
policy.

Data Owner and Storage Cloud:
Function calls:
• Upload(file, policy) : The data owner encrypts the

input file using the specified policy (or a Boolean
combination of policies). It then sends the encrypted
file and the metadata onto the cloud. In our
implementation, the file is encrypted using the RSA
algorithm, yet we can adopt a different symmetric-key
encryption algorithm depending on applications.

• Download(file) : The data owner retrieves the file
and the policy metadata from the cloud, checks the
integrity of the file, and decrypts the file.

• Delete(policy) : The data owner tells the key
manager to permanently revoke the specified policy.All
files associated with the policy will be assuredly
deleted.

• Renew(file, new_policy) : The data owner first
fetches the policy metadata for the given file from the
cloud. It then updates the policy metadata with the new
policy. Finally, it sends the policy metadata back to the
cloud.

The above function calls can be exported as library APIs
that can be embedded into different implementations of
the data owner. In our current prototype, we implement the
data owner as a user-level program that can access files
under a working directory of a desktop PC. The above
exported interfaces wrap the third-party APIs for
interacting with the storage cloud.
Key Manager:
Function calls:
• Creating a policy. The key manager creates a new

policy and returns the corresponding public control
key.

• Retrieving the public control key of a policy. If the
policy is accessible, then the key manager returns the
public control key. Otherwise, it returns an error.

• Decrypting a key with respect to a policy. If the policy
is accessible, then the key manager decrypts the
(blinded) key. Otherwise, it returns an error.

• Revoking a policy. The key manager revokes the
policy and removes the corresponding keys.

We implement the basic functionalities of the key manager
so that it can perform the required operations on the
cryptographic keys. In particular, all the policy control keys
are built upon 1024-bit blinded RSA.

Constraints: Typical Project Constraints
Resource Constaints
• Computer resources will be available on a limited

basis.
• Key customer resources will be available on a

restricted basis.
Environmental Constraints
• The development or operating environment is new, and

no project new members are familiar with it.
• Key decision-makers are difficult to contact when

issues arise.
• The project environment is new and the components

have not yet been successfully integrated.
• The project depends upon the successful and timely

completion of associated projects.
Budgetary Constraints
• Statistics used in preparing the estimates are unreliable.
• Outside consulting requirements cannot be accurately

estimated.
Functionality Constraints
• The scope of the project is unclear.
• The project depends upon receiving data from other,
external applications.

IV. IMPLEMENTATION

Our design is based on blinded RSA in which the data
owner requests the key manager to decrypt a blinded
version of the encrypted data key. If the associated policy is
satisfied, then the key manager will decrypt and return the
blinded version of the original data key. The data owner can
then recover the data key. In this way, the actual content of
the data key remains confidential to the key manager as
well as to any attacker that sniffs the communication
between the data owner and the key manager . For each
policy i, the key manager generates two secret large RSA
prime numbers pi and qi and computes the product ni =
piqi . The key manager then randomly chooses the RSA
public-private control key pair (ei, di). The parameters (ni,
ei) will be publicized, while di is securely stored in the key
manager. On the other hand, when the data owner encrypts
a file F, it randomly generates a data key K, and a secret
key Si that corresponds to policy Pi. We let {m}k denote a
message m encrypted with key k using asymmetric-key
encryption (e.g., RSA). We let R be the blinded component
when we use blinded RSA for the exchanges of
cryptographic keys. Suppose that F is associated with
policy Pi. Our goal here is to ensure that K, and hence F,
are accessible only when policy Pi is satisfied.
File upload: We set the private key value and also the
expiry date for the file and choose the file to be uploaded
and then uploading is completed and we get a random
generated public control key. The file that is uploaded is in
encrypted format by the RSA public key and is stored in the

Gousiya Begum et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2810-2815

www.ijcsit.com 2812

folder in the cloud with the user folder name who is
uploading.
File download: When we wish to download a file from the
data files we uploaded we need to first generate the control
key for it that is done by entering the privacy key value we
set along with the public control key that got generated
when file was uploaded this is result in giving us the public
and private keys by the RSA algorithm. The file can be
downloaded by entering the private control key that got
generated. The downloaded file gets stored in the folder
downloads in the cloud in decrypted format.
Request: The data owner can request the admin to give the
details about the keys if incase he forgets them. The keys
are sent to the mail id of the data owner in this way the keys
are secure.
Delete File: The data owner tells the key manager to
permanently revoke the specified policy. All files
associated with the policy will be assuredly deleted by
entering the password.
Policy Revocation for File Assured Deletion: If a policy Pi
is revoked, then the key manager completely removes the
private key di and the secret prime numbers pi and qi. Thus,
we cannot recover Si from Siei , and hence cannot recover
K and the file F . We say that the file F , which is tied to
policy Pi, is assuredly deleted. Note that the policy
revocation operations do not involve interactions with the
storage cloud.
Multiple Policies: In addition to one policy per file, FADE
supports a Boolean combination of multiple policies. We
mainly focus on two kinds of logical connectives: (i) the
conjunction (AND), which means the data is accessible
only when every policy is satisfied; and (ii) the disjunction
(OR), which means if any policy is satisfied, then the data
is accessible.
Conjunctive Policies: Suppose that F is associated with
conjunctive policies P1 ∧ P2 ∧ ⋅ ⋅ ⋅ ∧ Pm. To upload F to
the storage cloud, the data owner first randomly generates a
data key K, and secret keys S1, S2 . , Sm. It then sends the
following to the storage cloud: {{K}S1}S2 ⋅ ⋅ ⋅Sm, Se1 ,
Se2 ., Sem m , and {F}K. On the other hand, to recover F,
the data owner generates a random number R and sends
(S1R)e1 , (S2R)e2 , . . ., (SmR)em to the key manager,
which then returns S1R, S2R, . . . , SmR. The data owner
can then recover S1, S2, . . . , Sm, and hence K and F.
Disjunctive Policies: Suppose that F is associated with
disjunctive policies Pi1 ∨ Pi2 ∨ ⋅ ⋅ ⋅ ∨ Pim. To upload F
to the cloud, the data owner will send the following: {K}S1 ,
{K}S2 , . . ., {K}Sm, Se1 , Se2 , . . ., Sem m , and {F}K.
Therefore, the data owner needs to compute m different
encrypted copies of K. On the other hand, to recover F, we
can use any one of the policies to decrypt the file, as in the
above operations.
Policy Renewal: We conclude this section with the
discussion of policy renewal. Policy renewal means to
associate a file with a new policy (or combination of
policies). For example, if a user wants to extend the
expiration time of a file, then the user can update the old
policy that specifies an earlier expiration time to the new
policy that specifies a later expiration time.

V. EXPERMENTAL RESULTS AND ANALYSIS

Home Page : When we click on the home page option it
displays the details about the project.
Login Page : In this option page we need to enter the
Username, Password and click on the login link. If
administrator enters ID and password correct it goes to the
admin services otherwise displays the same page with an
error message. If user enters ID and password correct it
goes to the user services otherwise displays the same page
with an error message.
Register Page : In this page we click on register and
provide the corresponding details with this the registration
is done successfully.
Administrator Module :
Login : In this page enter the username, password and
click login. If administrator enters ID and password correct
it goes to the admin services otherwise displays the same
page with an error message.
Admin Profile : In this when we click on view request
link. The admin will see all types of user’s data.
User Details : When we Click on user details link. The
selected user details will be retrieved and displayed.
Delete User : When we click on delete user link. The
entered user name details checks in database and is deleted
successfully.
Cloud Details : By clicking on cloud link the selected
category details are retrieved and displayed.
User Module :
Login : When we enter the username, password and
click on the login link.If Employee enters ID and password
correct it goes to the other page otherwise displays the
same page with an error message to be viewed by the user.
Upload File : In this we browse a file and click on
upload button and then the selected file gets stored in
required area and displays message upload successful.
Data Files : When we click on request . As per the login
details or else the information provided by the user file
details will be generated and then the retrieved details will
be displayed.
Delete File : When we click on delete link. As per the
user login details the selected file will be deleted from the
user account and the deleted file will not be appear in the
file list.

 Fig. 2 Home page

Gousiya Begum et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2810-2815

www.ijcsit.com 2813

In this page we have the options to go to home age, signup,
userlogin, admin login and contact us. By clicking on
anyone of these links we will be taken to the respected
linked pages.

 Fig. 3 User/Admin Login

In this page we need to enter the username and password
and click login it will check if it is authentic user and then
login successfully and open up the user profile with the
options of request, change password, change policy, upload
file, delete file, view details.

 Fig. 4 File Upload

By clicking the upload file link we will be taken to this
page with details to be entered about the user name, enter
the id, select the policy to be implemented and then select
the file to be uploaded and click on confirm uploading file.
We will get a page displaying upload successful.

 Fig. 5 File Download

In this page we can download the file but first we need to
first generate a control key and enter the private key and
download the required file.

Fig. 6 Admin Page

 The admin when he logs in he has the options of

viewing the cloud servers, user details, file details, delete
user, view request.

 Fig. 7 Virtual Machine

When the admin clicks on the cloud server he can
view the files that got uploaded into the server.

 Fig. 8 Delete Files

The user can delete files by entering the file name and the
id and click delete button.

Gousiya Begum et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2810-2815

www.ijcsit.com 2814

VI. CONCLUSION

We propose a cloud storage system called
FADE ,which aims to provide assured deletion for files that
are hosted by today ’s cloud storage services .We present
the design of policy-based file assured deletion ,in which
files are assuredly deleted and made unrecoverable by
anyone when their associated file access policies are
revoked .We present the essential operations on
cryptographic keys so as to achieve policy-based file
assured deletion .We implement a prototype of FADE to
demonstrate its practicality, and empirically study its
performance over head when it works with Amazon S3.Our
experimental results provide insights into the performance-
security trade-off when FADE is deployed in practice.

REFERENCES
[1] Yang Tang, Patrick P. C. Lee, John C. S. Lui, and Radia Perlman,

FADE: Secure Overlay Cloud Storage with File Assured Deletion,
IEEE Transactions Dependable on secure computing, VOL:9 NO:6
YEAR 2012.

[2] Amazon. SmugMug Case Study: Amazon Web
Services .http://aws.amazon.com/solutions/case-studies/smugmug/,
2006.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A.
Konwinski, G. Lee,D. A. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia. Above the Clouds: A Berkeley View of Cloud Computing.

Technical Report UCB/EECS-2009-28, EECS Department,
University of California, Berkeley, Feb 2009.

[4] SmugMug. http://www.smugmug.com/.
[5] JungleDisk. http://www.jungledisk.com/
[6] M. Vrable, S.Savage, and G. M. Voelker. Cumulus: Filesystem

backup to the cloud. ACM Trans. On Storage(ToS), 5(4), Dec 2009.
[7] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy. Vanish: Increasing

Data Privacy with Self-Destructing Data. In Proc. of USENIX
Security Symposium, Aug 2009.

[8] S. Kamara and K.Lauter. Cryptographic Cloud Storage. In Proc. Of
Financial Cryptography: Workshop on Real-Life Cryptographic
Protocols and Standardization, 2010.

[9] W. Wang, Z. Li, R. Owens, and B. Bhargava. Secure and Efficient
Access to Outsourced Data. In ACM Cloud Computing Security
Workshop (CCSW), Nov 2009.

[10] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik. Scalable
and Efficient Provable Data Possession. In Proc. of SecureComm,
2008.

[11] C. Wang, Q. Wang, K. Ren, and W. Lou. Privacy-preserving pubic
auditing for storage security in cloud computing. In Proc. of IEEE
INFOCOM, Mar 2010.

[12] A.Yun, C. Shi and Y.Kim. On Protecting Integrity and
Confedentiality of Cryptographic File System for Outsourced Storage.
In ACM Cloud Computing Security Workshop (CCSW), Nov 2009.

[13] A. Shamir. How to Share a Secret. CACM, 22(11):612–613, Nov
1979.

[14] R. Pearlman. File System Design with Assured Delete. In ISOC
NDSS, 2007.

[15] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-Based
Encryption for Fine-Grained Access Control of Encrypted Data. In
Proc. of ACM CCS, 2006.

Gousiya Begum et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2810-2815

www.ijcsit.com 2815

